Image of Challenges of Sarcasm Detection for Social Network : A Literature Review

Artikel Jurnal

Challenges of Sarcasm Detection for Social Network : A Literature Review



Abstract

Nowadays, sarcasm recognition and detection simplified with various domains knowledge, among others, computer science, social science, psychology, mathematics, and many more. This article aims to explain trends in sentiment analysis especially sarcasm detection in the last ten years and its direction in the future. We review journals with the title’s keyword “sarcasm” and published from the year 2008 until 2018. The articles were classified based on the most frequently discussed topics among others: the dataset, pre-processing, annotations, approaches, features, context, and methods used. The significant increase in the number of articles on “sarcasm” in recent years indicates that research in this area still has enormous opportunities. The research about “sarcasm” also became very interesting because only a few researchers offer solutions for unstructured language. Some hybrid approaches using classification and feature extraction are used to identify the sarcasm sentence using deep learning models. This article will provide a further explanation of the most widely used algorithms for sarcasm detection with object social media. At the end of this article also shown that the critical aspect of research on sarcasm sentence that could be done in the future is dataset usage with various languages that cover unstructured data problem with contextual information will effectively detect sarcasm sentence and will improve the existing performance.


Ketersediaan

JUITA4a-005JUITA V8N2 November 2020Perpustakaan FT UPI YAITersedia
JUITA4b-005JUITA V8N2 November 2020Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUITA : Jurnal Informatika
No. Panggil
JUITA V8N2 November 2020
Penerbit Universitas Muhammadiyah Purwokerto : Purwokerto.,
Deskripsi Fisik
hlm : 169-178
Bahasa
Indonesia
ISBN/ISSN
2086-9398
Klasifikasi
JUITA
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 8 Nomor 2 November 2020
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this