Image of Data Mining for Potential Customer Segmentation in the Marketing Bank Dataset

Artikel Jurnal

Data Mining for Potential Customer Segmentation in the Marketing Bank Dataset



Abstract

Direct marketing is an effort made by the Bank to increase sales of its products and services, but the Bank sometimes has to contact a customer or prospective customer more than once to ascertain whether the customer or prospective customer is willing to subscribe to a product or service. To overcome this ineffective process several data mining methods are proposed. This study compares several data mining methods such as Naïve Bayes, K-NN, Random Forest, SVM, J48, AdaBoost J48 which prior to classification the SMOTE pre-processing technique was done in order to eliminate the class imbalance problem in the Bank Marketing dataset instance. The SMOTE + Random Forest method in this study produced the highest accuracy value of 92.61%.


Ketersediaan

JUITA5a-004JUITA V9N1 Mei 2021Perpustakaan FT UPI YAITersedia
JUITA5b-004JUITA V9N1 Mei 2021Perpustakaan FT UPI YAITersedia
JUITA5c-004JUITA V9N1 Mei 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUITA : Jurnal Informatika
No. Panggil
JUITA V9N1 Mei 2021
Penerbit Universitas Muhammadiyah Purwokerto : Purwokerto.,
Deskripsi Fisik
hlm : 25-32
Bahasa
English
ISBN/ISSN
2086-9398
Klasifikasi
JUITA
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 9 Nomor 1 Mei 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this