Image of A Deep Learning Using DenseNet201 to Detect Masked or Non-masked Face

Artikel Jurnal

A Deep Learning Using DenseNet201 to Detect Masked or Non-masked Face



Abstract

The use of masks on the face in public places is an obligation for everyone because of the Covid-19 pandemic, which claims victims. Indonesia made 3M policies, one of which is to use masks to prevent coronavirus transmission. Currently, several researchers have developed a masked or non-masked face detection system. One of them is using deep learning techniques to classify a masked or non-masked face. Previous research used the MobileNetV2 transfer learning model, which resulted in an F-Measure value below 0.9. Of course, this result made the detection system not accurate enough. In this research, we propose a model with more parameters, namely the DenseNet201 model. The number of parameters of the DenseNet201 model is five times more than that of the MobileNetV2 model. The results obtained from several up to 30 epochs show that the DenseNet201 model produces 99% accuracy when training data. Then, we tested the matching feature on video data, the DenseNet201 model produced an F-Measure value of 0.98, while the MobileNetV2 model only produced an F-measure value of 0.67. These results prove the masked or non-masked face detection system is more accurate using the DenseNet201 model.


Ketersediaan

JUITA5a-014JUITA V9N1 Mei 2021Perpustakaan FT UPI YAITersedia
JUITA5b-014JUITA V9N1 Mei 2021Perpustakaan FT UPI YAITersedia
JUITA5c-014JUITA V9N1 Mei 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUITA : Jurnal Informatika
No. Panggil
JUITA V9N1 Mei 2021
Penerbit Universitas Muhammadiyah Purwokerto : Purwokerto.,
Deskripsi Fisik
hlm : 115-122
Bahasa
English
ISBN/ISSN
2086-9398
Klasifikasi
JUITA
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 9 Nomor 1 Mei 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this