Image of The Empirical Comparison of Machine Learning Algorithm for the Class Imbalanced Problem in Conformational Epitope Prediction

Artikel Jurnal

The Empirical Comparison of Machine Learning Algorithm for the Class Imbalanced Problem in Conformational Epitope Prediction



Abstract

A conformational epitope is a part of a protein-based vaccine. It is challenging to identify using an experiment. A computational model is developed to support identification. However, the imbalance class is one of the constraints to achieving optimal performance on the conformational epitope B cell prediction. In this paper, we compare several conformational epitope B cell prediction models from non-ensemble and ensemble approaches. A sampling method from Random undersampling, SMOTE, and cluster-based undersampling is combined with a decision tree or SVM to build a non-ensemble model. A random forest model and several variants of the bagging method is used to construct the ensemble model. A 10-fold cross-validation method is used to validate the model. The experiment results show that the combination of the cluster-based under-sampling and decision tree outperformed the other sampling method when combined with the non-ensemble and the ensemble method. This study provides a baseline to improve existing models for dealing with the class imbalance in the conformational epitope prediction.


Ketersediaan

JUITA5a-016JUITA V9N1 Mei 2021Perpustakaan FT UPI YAITersedia
JUITA5b-016JUITA V9N1 Mei 2021Perpustakaan FT UPI YAITersedia
JUITA5c-016JUITA V9N1 Mei 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUITA : Jurnal Informatika
No. Panggil
JUITA V9N1 Mei 2021
Penerbit Universitas Muhammadiyah Purwokerto : Purwokerto.,
Deskripsi Fisik
hlm : 131-138
Bahasa
English
ISBN/ISSN
2086-9398
Klasifikasi
JUITA
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 9 Nomor 1 Mei 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this