Detail Cantuman
Advanced SearchArtikel Jurnal
The Empirical Comparison of Machine Learning Algorithm for the Class Imbalanced Problem in Conformational Epitope Prediction
Abstract
A conformational epitope is a part of a protein-based vaccine. It is challenging to identify using an experiment. A computational model is developed to support identification. However, the imbalance class is one of the constraints to achieving optimal performance on the conformational epitope B cell prediction. In this paper, we compare several conformational epitope B cell prediction models from non-ensemble and ensemble approaches. A sampling method from Random undersampling, SMOTE, and cluster-based undersampling is combined with a decision tree or SVM to build a non-ensemble model. A random forest model and several variants of the bagging method is used to construct the ensemble model. A 10-fold cross-validation method is used to validate the model.  The experiment results show that the combination of the cluster-based under-sampling and decision tree outperformed the other sampling method when combined with the non-ensemble and the ensemble method. This study provides a baseline to improve existing models for dealing with the class imbalance in the conformational epitope prediction.
Ketersediaan
| JUITA5a-016 | JUITA V9N1 Mei 2021 | Perpustakaan FT UPI YAI | Tersedia | 
| JUITA5b-016 | JUITA V9N1 Mei 2021 | Perpustakaan FT UPI YAI | Tersedia | 
| JUITA5c-016 | JUITA V9N1 Mei 2021 | Perpustakaan FT UPI YAI | Tersedia | 
Informasi Detil
| Judul Seri | 
           JUITA : Jurnal Informatika 
         | 
      
|---|---|
| No. Panggil | 
           JUITA V9N1 Mei 2021 
         | 
      
| Penerbit | Universitas Muhammadiyah Purwokerto : Purwokerto., 2021 | 
| Deskripsi Fisik | 
           hlm : 131-138 
         | 
      
| Bahasa | 
           English 
         | 
      
| ISBN/ISSN | 
           2086-9398 
         | 
      
| Klasifikasi | 
           JUITA 
         | 
      
| Tipe Isi | 
           - 
         | 
      
| Tipe Media | 
           - 
         | 
      
|---|---|
| Tipe Pembawa | 
         - 
         | 
      
| Edisi | 
           Volume 9 Nomor 1 Mei 2021 
         | 
      
| Subyek | |
| Info Detil Spesifik | 
           - 
         | 
      
| Pernyataan Tanggungjawab | 
           - 
         | 
      
Versi lain/terkait
Tidak tersedia versi lain
        





