Detail Cantuman
Advanced SearchArtikel Jurnal
Corn Seeds Identification Based on Shape and Colour Features
Corn is one of the agricultural products that are essential as daily food sources or energy sources. Corn selection or sorting is important to produce high-quality seeds before its distribution to areas with varying conditions and agricultural characteristics. Hence, it is necessary to build corn seeds identification. In this paper, we propose a corn seed identification technique that incorporates the advantage of combining shape and colour features. The identification process consists of three main stages, namely, ROI selection, feature extraction, and classification using the Artificial Neural Network (ANN) algorithm. The shape feature originates from the eccentricity value or comparison value between a distance of minor ellipse foci and major ellipse foci of an object. Meanwhile, the color features are extracted based on the HSV (Hue-Saturation-Value) channel. The experimental result shows that the proposed system achieves excellent performance for the identification of poor and good corn quality for BIMA-20 and NASA-29 species. The classification result for BIMA-20 Good vs. BIMA-20 Bad gives an accuracy of 89%, while the classification accuracy of BIMA-20 Good vs. NASA-29 Good is 97%.
Ketersediaan
JKI5-001 | JKI V6N2 Oktober 2020 | Perpustakaan FT UPI YAI | Tersedia |
Informasi Detil
Judul Seri |
Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika
|
---|---|
No. Panggil |
JKI V6N2 Oktober 2020
|
Penerbit | Universitas Muhammadiyah Surakarta : Surakarta., 2020 |
Deskripsi Fisik |
hlm : 66-72
|
Bahasa |
English
|
ISBN/ISSN |
2621-038X
|
Klasifikasi |
JKI
|
Tipe Isi |
-
|
Tipe Media |
-
|
---|---|
Tipe Pembawa |
-
|
Edisi |
Volume 6 Nomor 2 Oktober 2020
|
Subyek | |
Info Detil Spesifik |
-
|
Pernyataan Tanggungjawab |
-
|
Versi lain/terkait
Tidak tersedia versi lain