Image of Convolutional Neural Network and Support Vector Machine in Classification of Flower Images

Artikel Jurnal

Convolutional Neural Network and Support Vector Machine in Classification of Flower Images



Flowers are among the raw materials in many industries including the pharmaceuticals and cosmetics. Manual classification of flowers requires expert judgment of a botanist and can be time consuming and inconsistent. The ability to classify flowers using computers and technology is the right solution to solve this problem. There are two algorithms that are popular in image classification, namely Convolutional Neural Network (CNN) and Support Vector Machine (SVM). CNN is one of deep neural network classification algorithms while SVM is one of machine learning algorithm. This research was an effort to determine the best performer of the two methods in flower image classification. Our observation suggests that CNN outperform SVM in flower image classification. CNN gives an accuracy of 91.6%, precision of 91.6%, recall of 91.6% and F1 Score of 91.6%.


Ketersediaan

JKI8-001JKI V8N1 April 2022Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika
No. Panggil
JKI V8N1 April 2022
Penerbit Universitas Muhammadiyah Surakarta : Surakarta.,
Deskripsi Fisik
hlm :1-7
Bahasa
English
ISBN/ISSN
2621-038X
Klasifikasi
JKI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 8 Nomor 1 April 2022
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this