Image of Peramalan Penjualan Sediaan Farmasi Menggunakan Long Short-term Memory: Studi Kasus pada Apotik Suganda

Artikel Jurnal

Peramalan Penjualan Sediaan Farmasi Menggunakan Long Short-term Memory: Studi Kasus pada Apotik Suganda




Abstract
Peramalan data penjualan berperan penting dalam optimisasi persediaan produk pada bisnis retail. Apotek adalah satu bentuk bisnis retail yang menjual sediaan farmasi (obat, bahan obat, obat tradisional dan kosmetika), alat kesehatan, dan bahan medis habis pakai. Apotek Suganda yang berlokasi di Kabupaten Sragen, melakukan penentuan rencana pengisian kembali (pembelian) sediaan farmasi dengan manual berbasis kebiasaan semata. Mekanisme tersebut terkadang menyebabkan terjadinya kekurangan persediaan obat. Oleh karena itu, untuk memperbaiki perencanaan pembelian, perlu dilakukan peramalan permintaan sediaan farmasi. Beberapa metode dujikan untuk melakukan peramalan permintaan, salah satunya menggunakan metode Long Short-term Memory (LSTM), yakni suatu metode berbasis machine learning. Bersama dengan métode-metode lainya yakni Least Square, Single exponential Smoothing, Double exponential Smoothing, Triple Exponential Smoothing, Winter Exponential Smoothing, Weight Moving Average, dan ARIMA, peramalan penjualan sediaan farmasi dilakukan. Hasil pengujian menunjukkan bahwa peramalan penjualan sediaan farmasi secara mingguan yang menggunakan LSTM memiliki Mean Absolute Percentage Error (MAPE) yang paling rendah dibanding metode lainnya. Dengan demikian, implementasi peramalan penjualan berbasis machine learning perlu dimanfaatkan, salah satunya dengan membuat modul peramalan untuk diintegrasikan dengan aplikasi penjualan yang dimiliki oleh apotek tersebut.


Ketersediaan

JPMITI4a-009JPMITI V19N2 2020Perpustakaan FT UPI YAITersedia
JPMITI4b-009JPMITI V19N2 2020Perpustakaan FT UPI YAITersedia
JPMITI4c-009JPMITI V19N2 2020Perpustakaan FT UPI YAITersedia
JPMITI4d-009JPMITI V19N2 2020Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
Performa : Media Ilmiah Teknik Industri
No. Panggil
JPMITI V19N2 2020
Penerbit Universitas Sebelas Maret : Surakarta.,
Deskripsi Fisik
hlm : 168-183
Bahasa
Indonesia
ISBN/ISSN
1412-8624
Klasifikasi
JPMITI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 19 Nomor 2 2020
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this