Image of Implementation of Data Mining using Naïve Bayes Classifier Method in Food Crop Prediction

Artikel Jurnal

Implementation of Data Mining using Naïve Bayes Classifier Method in Food Crop Prediction




Abstract

Purpose: This study aims to developed modeling to prediction system of food crops by data mining, with Naïve Bayes Classifier (NBC), which expected will give information and can use by the farmer and industrial food crops. Methods: On classification, progress attributes that use there is the temperature (°C), humidity (%), rainfall (mm), photoperiodicity (hour), and production result (ton) as a class attribute. The data of research that getting there are climate data and yield of food crops by data from the Central Bureau of Statistics (BPS) and the Meteorology, Climatology and Geophysics Agency (BMKG) from 2010 to 2017 at Lampung Province. Data of food crops used in this research there are paddy, maize, and soybean. Result: The research results about the average accuracy of modeling that development using the 10-fold cross-validation method, that had an accuracy value of 72.78% and Root Mean Square Error (RMSE) there is 0.438. Novelty: Prediction system of food crops by data mining.


Ketersediaan

SJI3a-006SJI V8N1 May 2021Perpustakaan FT UPI YAITersedia
SJI3b-006SJI V8N1 May 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
Scientific Journal of Informatics
No. Panggil
SJI V8N1 May 2021
Penerbit Universitas Negeri Semarang : Semarang.,
Deskripsi Fisik
hlm : 43-50
Bahasa
English
ISBN/ISSN
2407-7658
Klasifikasi
SJI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 8 Nomor 1 May 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this