Image of Prediction of COVID-19 Using Recurrent Neural Network Model

Artikel Jurnal

Prediction of COVID-19 Using Recurrent Neural Network Model




Abstract

Purpose: The COVID-19 case that infected humans was first discovered in China at the end of 2019. Since then, COVID-19 has spread to almost all countries in the world. To overcome this problem, it takes a quick effort to identify humans infected with COVID-19 more quickly. Methods: In this paper, RNN is implemented using the Elman network and applied to the COVID-19 dataset from Kaggle. The dataset consists of 70% training data and 30% test data. The learning parameters used were the maximum epoch, learning late, and hidden nodes. Result: The research results show the percentage of accuracy is 88. Novelty: One of the alternative diagnoses for potential COVID-19 disease is Recurrent Neural Network (RNN).


Ketersediaan

SJI3a-013SJI V8N1 May 2021Perpustakaan FT UPI YAITersedia
SJI3b-013SJI V8N1 May 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
Scientific Journal of Informatics
No. Panggil
SJI V8N1 May 2021
Penerbit Universitas Negeri Semarang : Semarang.,
Deskripsi Fisik
hlm : 98-103
Bahasa
English
ISBN/ISSN
2407-7658
Klasifikasi
SJI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 8 Nomor 1 May 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this