Detail Cantuman
Advanced SearchArtikel Jurnal
Prediction of COVID-19 Using Recurrent Neural Network Model
Abstract
Purpose: The COVID-19 case that infected humans was first discovered in China at the end of 2019. Since then, COVID-19 has spread to almost all countries in the world. To overcome this problem, it takes a quick effort to identify humans infected with COVID-19 more quickly. Methods: In this paper, RNN is implemented using the Elman network and applied to the COVID-19 dataset from Kaggle. The dataset consists of 70% training data and 30% test data. The learning parameters used were the maximum epoch, learning late, and hidden nodes. Result: The research results show the percentage of accuracy is 88. Novelty: One of the alternative diagnoses for potential COVID-19 disease is Recurrent Neural Network (RNN).
Ketersediaan
SJI3a-013 | SJI V8N1 May 2021 | Perpustakaan FT UPI YAI | Tersedia |
SJI3b-013 | SJI V8N1 May 2021 | Perpustakaan FT UPI YAI | Tersedia |
Informasi Detil
Judul Seri |
Scientific Journal of Informatics
|
---|---|
No. Panggil |
SJI V8N1 May 2021
|
Penerbit | Universitas Negeri Semarang : Semarang., 2021 |
Deskripsi Fisik |
hlm : 98-103
|
Bahasa |
English
|
ISBN/ISSN |
2407-7658
|
Klasifikasi |
SJI
|
Tipe Isi |
-
|
Tipe Media |
-
|
---|---|
Tipe Pembawa |
-
|
Edisi |
Volume 8 Nomor 1 May 2021
|
Subyek | |
Info Detil Spesifik |
-
|
Pernyataan Tanggungjawab |
-
|
Versi lain/terkait
Tidak tersedia versi lain