Image of Model for Identification and Prediction of Leaf Patterns: Preliminary Study for Improvement

Artikel Jurnal

Model for Identification and Prediction of Leaf Patterns: Preliminary Study for Improvement




Abstract

Purpose: Many studies have conducted studies related to automation for image-based plant species identification recently. Types of plants, in general, can be identified by looking at the shape of the leaves, colors, stems, flowers, and others. Not everyone can immediately recognize the types of plants scattered around the environment. In Indonesia, herbal plants thrive and are abundantly found and used as a concoction of traditional medicine known for its medicinal properties from generation to generation. In the current Z-generation era, children lack an understanding of the types of plants that benefit life. This study identifies and predicts the pattern of the leaf shape of herbal plants. Methods: The dataset used in this study used 15 types of herbal plants with 30 leaf data for each plant to obtain 450 data used. The extraction process uses the GLCM algorithm, and classification uses the K-NN algorithm. Result: The results carried out through the testing process in this study showed that the accuracy rate of the leaf pattern prediction process was 74% of the total 15 types of plants used. Value: Process of identifying and predicting leaf patterns of herbal plants can be applied using the K-NN classification algorithm combined with GLCM with the level of accuracy obtained.


Ketersediaan

SJI4a-008SJI V8N2 November 2021Perpustakaan FT UPI YAITersedia
SJI4b-008SJI V8N2 November 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
Scientific Journal of Informatics
No. Panggil
SJI V8N2 November 2021
Penerbit Universitas Negeri Semarang : Semarang.,
Deskripsi Fisik
hlm : 244-250
Bahasa
English
ISBN/ISSN
2407-7658
Klasifikasi
SJI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 8 Nomor 2 November 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this