Image of Halal Food Restaurant Classification Based on Restaurant Review in Indonesian Language Using Machine Learning

Artikel Jurnal

Halal Food Restaurant Classification Based on Restaurant Review in Indonesian Language Using Machine Learning



Abstract
Purpose: Halal tourism or muslim friendly tourism has big potential for the tourism industry in Indonesia. According to Cresent Rating, the world’s leading authority on halal-friendly travel, one of the indicators for halal tourism is the availability of choices for halal foods. To support halal tourism, unfortunately, not all restaurants around the tourism object or in the city where the tourism object is located have labels or information that makes people know about halal food in the restaurant easily.
Methods/Study design/approach: The data in this research was obtained from online media such as Google Maps, TripAdvisor, and Zoomato. The data consists of 870 data with the classification of halal food restaurants and 590 data with the reverse classification. Machine learning methods were chosen as classifiers. Some of them were Naive Bayes, Support Vector Machine, and K-Nearest Neighbor.
Result/Findings: The result from this research shows that the proposed method achieved an accuracy of 95,9% for Support Vector Machine, 93,8% for Multinomial Naive Bayes, and 91% for K-Nearest Neighbor. In the future, our result will be to support the halal tourism environment in terms of technology.
Novelty/Originality/Value: In this study, we utilize restaurant reviews done by visitors to get information about the classification of halal food restaurants.


Ketersediaan

SJI4a-017SJI V8N2 November 2021Perpustakaan FT UPI YAITersedia
SJI4b-017SJI V8N2 November 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
Scientific Journal of Informatics
No. Panggil
SJI V8N2 November 2021
Penerbit Universitas Negeri Semarang : Semarang.,
Deskripsi Fisik
hlm : 314-319
Bahasa
English
ISBN/ISSN
2407-7658
Klasifikasi
SJI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 8 Nomor 2 November 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this