Image of The Implementation of K-Means dan K-Medoids Algorithm for Customer Segmentation on E-commerce Data Transactions

Artikel Jurnal

The Implementation of K-Means dan K-Medoids Algorithm for Customer Segmentation on E-commerce Data Transactions



Abstract

Nowadays, e-commerce data transactions are commonly used by companies to provide new information. The data transaction can reveal customer segmentation or groups based on the similar characteristics and behavior of each customer. Data Mining is one of technique to conduct the customer segmentation through clustering method. The study aims to applied the clustering method on e-commerce data transactions by using both K-Means and K-Medoids algorithm. The result shows that both algorithms reveal optimum of cluster result with value of k = 3. The results are also indicating the conformity with the elbow method’s results and the Davies Bouldin Index validity test which shows that the optimal number of clusters is 3. The test results show that K-Medoids has the best performance with a ration value of 0.337575 compared to K-Means 0.3380724. Hence, K-Medoids are used in data clustering as the optimal cluster. The results of customer segmentation according to the Customer Loyalty Matrix consist of core customers, new customers, and lost customers.


Ketersediaan

SISTEMASI6a-001SISTEMASI V11N2 Mei 2022Perpustakaan FT UPI YAITersedia
SISTEMASI6b-001SISTEMASI V11N2 Mei 2022Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
SISTEMASI : Jurnal Sistem Informasi
No. Panggil
SISTEMASI V11N2 Mei 2022
Penerbit Universitas Islam Indragiri : Riau.,
Deskripsi Fisik
hlm : 260-270
Bahasa
Indonesia
ISBN/ISSN
2302-8149
Klasifikasi
SISTEMASI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 11 Nomor 2 Mei 2022
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this