Image of Hyperparameter Tuning on Classification Algorithm with Grid Search

Artikel Jurnal

Hyperparameter Tuning on Classification Algorithm with Grid Search



Abstract

Currently, machine learning algorithms continue to be developed to perform optimization with various methods to produce the best-performing model. In Supervised learning or classification, most of the algorithms have hyperparameters. Tuning hyperparameter is an architecture of deep learning to improve the performance of predictive models. One of the popular hyperparameter methodologies is Grid Search. Grid Search using Cross Validation provides convenience in testing each model parameter without having to do manual validation one by one. In this study, we will use a method in hyperparameter optimization, namely Grid Search. The purpose of this study is to find out the best optimization of hyperparameters against 7 machine learning classification algorithms. Validation of experimental results using the Mean Cross Validation. The experimental results show that the XGBoost model gets the best value while the Decision tree has the lowest value.


Ketersediaan

SISTEMASI6a-010SISTEMASI V11N2 Mei 2022Perpustakaan FT UPI YAITersedia
SISTEMASI6b-010SISTEMASI V11N2 Mei 2022Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
SISTEMASI : Jurnal Sistem Informasi
No. Panggil
SISTEMASI V11N2 Mei 2022
Penerbit Universitas Islam Indragiri : Riau.,
Deskripsi Fisik
hlm : 391-401
Bahasa
Indonesia
ISBN/ISSN
2302-8149
Klasifikasi
SISTEMASI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 11 Nomor 2 Mei 2022
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this