Image of Prediksi Kelalaian Pinjaman Bank Menggunakan Random Forest dan Adaptive Boosting

Artikel Jurnal

Prediksi Kelalaian Pinjaman Bank Menggunakan Random Forest dan Adaptive Boosting



Abstract
Abstract — A loan is one of the most important products on the bank, which used for main revenue. All bank tries to find the most effective business strategy to persuade a customer to use the loan, but loan default has a negative effect after the application is approved. Loan default causes loss on the bank, therefore it is mandatory to calculate in order to decrease the risk of the loan default. This study uses random forest and adaptive boosting machine learning methods to get the prediction and decision. The random forest uses a voting method from many decision trees and adaptive boosting can support to increase accuracy, stability and handle an underfit or overfit problem. The experimental results show that Adaptive Boosted Random Forest outperformed normal random forest and Deep learning Neural Network (DNN) in recall rate evaluation metrics with small trade-offs in the accuracy.


Ketersediaan

JUTISI1-005JUTISI V6N1 April 2020Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUTISI : Jurnal Teknik Informatika dan Sistem Informasi
No. Panggil
JUTISI V6N1 April 2020
Penerbit Maranatha University Press : Bandung.,
Deskripsi Fisik
hlm : 50-60
Bahasa
Indonesia
ISBN/ISSN
2443-2210
Klasifikasi
JUTISI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 6 Nomor 1 April 2020
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this