Detail Cantuman
Advanced SearchArtikel Jurnal
K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia
Abstract
Tokopedia is a popular marketplace used by e-commerce in Indonesia. Customers’ perception of Twitter towards Tokopedia can be used as an important source of information and can be processed into useful insights. Sentiment analysis is a solution that can be used to process the customers’ perception using K-Nearest Neighbor based on Particle Swarm Optimization. The purpose of this study is to classify customers’ perception based on positive, neutral, and negative classes. The test is carried out with four different scenarios and k values which are evaluated using a confusion matrix. Evaluation results showed the distribution of the dataset is 90:10 and the value of k = 1 is the best evaluation result, which is 88.11%. The feature selection was used for results by using Particle Swarm Optimization. The Particle Swarm Optimization used 20 iterations and 10 particles. It produced 97.9% the best evaluation accuracy, 96.17% precision, 96.62% recall, and 96.39% f-measure.
Ketersediaan
JUTISI2-009 | JUTISI V6N2 Agustus 2020 | Perpustakaan FT UPI YAI | Tersedia |
Informasi Detil
Judul Seri |
JUTISI : Jurnal Teknik Informatika dan Sistem Informasi
|
---|---|
No. Panggil |
JUTISI V6N2 Agustus 2020
|
Penerbit | Maranatha University Press : Bandung., 2020 |
Deskripsi Fisik |
hlm : 242-253
|
Bahasa |
Indonesia
|
ISBN/ISSN |
2443-2210
|
Klasifikasi |
JUTISI
|
Tipe Isi |
-
|
Tipe Media |
-
|
---|---|
Tipe Pembawa |
-
|
Edisi |
Volume 6 Nomor 2 Agustus 2020
|
Subyek | |
Info Detil Spesifik |
-
|
Pernyataan Tanggungjawab |
-
|
Versi lain/terkait
Tidak tersedia versi lain