Image of K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia

Artikel Jurnal

K-Nearest Neighbor Berbasis Particle Swarm Optimization untuk Analisis Sentimen Terhadap Tokopedia




Abstract
Tokopedia is a popular marketplace used by e-commerce in Indonesia. Customers’ perception of Twitter towards Tokopedia can be used as an important source of information and can be processed into useful insights. Sentiment analysis is a solution that can be used to process the customers’ perception using K-Nearest Neighbor based on Particle Swarm Optimization. The purpose of this study is to classify customers’ perception based on positive, neutral, and negative classes. The test is carried out with four different scenarios and k values which are evaluated using a confusion matrix. Evaluation results showed the distribution of the dataset is 90:10 and the value of k = 1 is the best evaluation result, which is 88.11%. The feature selection was used for results by using Particle Swarm Optimization. The Particle Swarm Optimization used 20 iterations and 10 particles. It produced 97.9% the best evaluation accuracy, 96.17% precision, 96.62% recall, and 96.39% f-measure.


Ketersediaan

JUTISI2-009JUTISI V6N2 Agustus 2020Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUTISI : Jurnal Teknik Informatika dan Sistem Informasi
No. Panggil
JUTISI V6N2 Agustus 2020
Penerbit Maranatha University Press : Bandung.,
Deskripsi Fisik
hlm : 242-253
Bahasa
Indonesia
ISBN/ISSN
2443-2210
Klasifikasi
JUTISI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 6 Nomor 2 Agustus 2020
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this