Image of Prediksi Pencapaian Target Kerja Menggunakan Metode Deep Learning dan Data Envelopment Analysis

Artikel Jurnal

Prediksi Pencapaian Target Kerja Menggunakan Metode Deep Learning dan Data Envelopment Analysis



Abstract
Along with the rapid development of technology, especially in the computer field, several methods have been developed for target setting. Data Envelopment Analysis (DEA) is commonly employed to analyze efficiency levels based on historical data with static targets. Data Envelopment Analysis results in a low level of efficiency against the use of static targets. A new target setting solution is needed to handle dynamic targets. Based on the need, we propose a method to predict more realistic dynamic targets using Deep Learning Long Short Term Memory (LSTM) approach from the results of the Data Envelopment Analysis (DEA). This study leads to a prediction model with 71.2% average accuracy.


Ketersediaan

JUTISI2-013JUTISI V6N2 Agustus 2020Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUTISI : Jurnal Teknik Sipil dan Sistem Informasi
No. Panggil
JUTISI V6N2 Agustus 2020
Penerbit Maranatha University Press : Bandung.,
Deskripsi Fisik
hlm : 288-300
Bahasa
Indonesia
ISBN/ISSN
2443-2210
Klasifikasi
JUTISI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 6 Nomor 2 Agustus 2020
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this