Image of Implementasi DenseNet Untuk Mengidentifikasi Kanker Kulit Melanoma

Artikel Jurnal

Implementasi DenseNet Untuk Mengidentifikasi Kanker Kulit Melanoma



Abstract
Skin is a part of a human body that covers the entire body and protect the lower layer from direct sunlight and another microorganism. Because of that, skin cells are always changing and could be changed because of genetic mutation that causes skin cancer. In general, skin cancer is divided into three groups, namely : skin cancer Basal cell carcinoma, skin cancer Squamous cell carcinoma, and skin cancer Melanoma. Melanoma skin cancer is caused by abnormal growth in melanocyte cells. Several methods are proposed to predict Melanoma skin cancer using ResNet, LeNet, and Support Vector Machine. System performance is measured based on the value of accuracy, precision, recall, and f-measure. This experiment is conducted using a Melanoma skin cancer dataset that obtained the average value in terms of accuracy, precision, recall, and f-measure are 0.94, 0.95, 0.92, and 0.94 respectively. Based on that result, the proposed DenseNet121 performs better with 0.94 accuracy, compared with ResNet, LeNet, and Support Vector Machine method.


Ketersediaan

JUTISI3-001JUTISI V6N3 Desember 2020Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUTISI : Jurnal Teknik Informatika dan Sistem Informasi
No. Panggil
JUTISI V6N3 Desember 2020
Penerbit Maranatha University Press : Bandung.,
Deskripsi Fisik
hlm : 425-433
Bahasa
Indonesia
ISBN/ISSN
2443-2210
Klasifikasi
JUTISI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 6 Nomor 3 Desember 2020
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this