Image of Pengelompokan Komentar Dataset Sentipol dengan Modified K-Means Clustering

Artikel Jurnal

Pengelompokan Komentar Dataset Sentipol dengan Modified K-Means Clustering



Abstract
Clustering is a technique in data mining thatgroups data sets into similar data clusters. One of thealgorithms that is commonly used for clustering is K-Means.However, the K-Means algorithm has several weaknesses, oneof them is the random factor in initial centroid selection, sothat cluster result is inconsistent even though it is tested withthe exact same data. The Modified K-Means algorithm focuseson selecting the initial centroid to overcome inconsistencies ofcluster results in the K-Means method. The test was conductedusing sentipol dataset and only focused on comment data.Furthermore, the specified number of clusters is 3 based on thenumber of existing comment labels (positive, negative, andneutral). According to testing result proves that Modified KMeans algorithm produces better purity value than K-Meansalgorithm. Modified K-Means algorithm produces average ofpurity value 0,42, while K-Means produces average of purityvalue 0,391. Meanwhile, from testing related to random factorsconducted 5 times with the same attributes and test data, theresults of the cluster on the Modified K-Means algorithm didnot change, so automatically the resulting purity value was alsothe same. Whereas in the K-Means algorithm, the clusterresults always change in each test, so the result of purity valueis also likely to change.


Ketersediaan

JUTISI3-011JUTISI V6N3 Desember 2020Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUTISI : Jurnal Teknik Informatika dan Sistem Informasi
No. Panggil
JUTISI V6N3 Desember 2020
Penerbit Maranatha University Press : Bandung.,
Deskripsi Fisik
hlm : 531-540
Bahasa
Indonesia
ISBN/ISSN
2443-2210
Klasifikasi
JUTISI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 6 Nomor 3 Desember 2020
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this