Image of Perbandingan Algoritma Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel

Artikel Jurnal

Perbandingan Algoritma Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel




Abstract
Abstract — The application of machine learning technology in various industrial fields is currently developing rapidly, including in the retail industry. This study aims to find the most accurate algorithmic model so that it can be used to help retailers choose a store location more precisely. By using several methods such as Pearson Correlation, Chi-Square Features, Recursive Feature Elimination and Tree-based to select features (predictive variables). These features are then used to train and build models using 6 different classification algorithms such as Logistic Regression, K Nearest Neighbor (KNN), Decision Tree, Random Forest, Support Vector Machine (SVM) and Neural Network to classify whether a location is recommended or not as a new store location.
Keywords— Application of Machine Learning, Pearson Correlation, Random Forest, Neural Network, Logistic Regression.


Ketersediaan

JUTISI4-004JUTISI V7N1 April 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUTISI : Jurnal Teknik Informatika dan Sistem Informasi
No. Panggil
JUTISI V7N1 April 2021
Penerbit Maranatha University Press : Bandung.,
Deskripsi Fisik
hlm : 35-46
Bahasa
Indonesia
ISBN/ISSN
2443-2210
Klasifikasi
JUTISI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 7 Nomor 1 April 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this