Image of Pengaruh Preprocessing Terhadap Klasifikasi Diabetic Retinopathy dengan Pendekatan Transfer Learning Convolutional Neural Network

Artikel Jurnal

Pengaruh Preprocessing Terhadap Klasifikasi Diabetic Retinopathy dengan Pendekatan Transfer Learning Convolutional Neural Network




Abstract
Diabetic retinopathy (DR) is eye diseases caused by diabetic mellitus or sugar diseases. If DR is detected in early stage, the blindness that follow can be prevented. Ophthalmologist or eye clinician usually decide the stage of DR from retinal fundus images. Careful examination of retinal fundus images is time consuming task and require experienced clinicians or ophthalmologist but a computer which has been trained to recognize the DR stages can diagnose and give result in real-time manner. One approach of algorithm to train a computer to recognize an image is deep learning Convolutional Neural Network (CNN). CNN allows a computer to learn the features of an image, in our case is retinal fundus image, automatically. Preprocessing is usually done before a CNN model is trained. In this study, four preprocessing were carried out. Of the four preprocessing tested, preprocessing with CLAHE and unsharp masking on the green channel of the retinal fundus image give the best results with an accuracy of 79.79%, 82.97% precision, 74.64% recall, and 95.81% AUC. The CNN architecture used is Inception v3.


Ketersediaan

JUTISI4-010JUTISI V7N1 April 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUTISI : Jurnal Teknik Informatika dan Sistem Informasi
No. Panggil
JUTISI V7N1 April 2021
Penerbit Maranatha University Press : Bandung.,
Deskripsi Fisik
hlm : 110-124
Bahasa
Indonesia
ISBN/ISSN
2443-2210
Klasifikasi
JUTISI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 7 Nomor 1 April 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this