Image of Pemanfaatan Scale Invariant Feature Transform Berbasis Saliency untuk Klasifikasi Sel Darah Putih

Artikel Jurnal

Pemanfaatan Scale Invariant Feature Transform Berbasis Saliency untuk Klasifikasi Sel Darah Putih




Abstract
White blood cells are cells that makeup blood components that function to fight various diseases from the body (immune system). White blood cells are divided into five types, namely basophils, eosinophils, neutrophils, lymphocytes, and monocytes. Detection of white blood cell types is done in a laboratory which requires more effort and time. One solution that can be done is to use machine learning such as Support Vector Machine (SVM) with Scale Invariant Feature Transform (SIFT) feature extraction. This study uses a dataset of white blood cell images that previously carried out a pre-processing stage consisting of cropping, resizing, and saliency. The saliency method can take a significant part in image data and. The SIFT feature extraction method can provide the location of the keypoint points that SVM can use in studying and recognizing white blood cell objects. The use of region-contrast saliency with kernel radial basis function (RBF) yields the best accuracy, precision, and recall results. Based on the test results obtained in this study, saliency can improve the accuracy, precision, and recall of SVM on the white blood cell image dataset compared to without saliency.


Ketersediaan

JUTISI5a-016JUTISI V7N2 Agustus 2021Perpustakaan FT UPI YAITersedia
JUTISI5b-016JUTISI V7N2 Agustus 2021Perpustakaan FT UPI YAITersedia

Informasi Detil

Judul Seri
JUTISI : Jurnal Teknik Informatika dan Sistem Informasi
No. Panggil
JUTISI V7N2 Agustus 2021
Penerbit Maranatha University Press : Bandung.,
Deskripsi Fisik
hlm : 498-507
Bahasa
Indonesia
ISBN/ISSN
2443-2210
Klasifikasi
JUTISI
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
-
Edisi
Volume 7 Nomor 2 Agustus 2021
Subyek
Info Detil Spesifik
-
Pernyataan Tanggungjawab

Versi lain/terkait

Tidak tersedia versi lain




Informasi


DETAIL CANTUMAN


Kembali ke sebelumnyaXML DetailCite this